Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(10): 3188-3203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351171

RESUMO

Diabetic kidney disease (DKD) is the most common microvascular complication of diabetes, and there is an urgent need to discover reliable biomarkers for early diagnosis. Here, we established an effective urine multi-omics platform and integrated metabolomics and peptidomics to investigate the biological changes during DKD pathogenesis. Methods: Totally 766 volunteers (221 HC, 198 T2DM, 175 early DKD, 125 overt DKD, and 47 grey-zone T2DM patients with abnormal urinary mALB concentration) were included in this study. Non-targeted metabolic fingerprints of urine samples were acquired on matrix-free LDI-MS platform by the tip-contact extraction method using fluorinated ethylene propylene coated silicon nanowires chips (FEP@SiNWs), while peptide profiles hidden in urine samples were uncovered by MALDI-TOF MS after capturing urine peptides by porous silicon microparticles. Results: After multivariate analysis, ten metabolites and six peptides were verified to be stepwise regulated in different DKD stages. The altered metabolic pathways and biological processes associated with the DKD pathogenesis were concentrated in amino acid metabolism and cellular protein metabolic process, which were supported by renal transcriptomics. Interestingly, multi-omics significantly increased the diagnostic accuracy for both early DKD diagnosis and DKD status discrimination. Combined with machine learning, a stepwise prediction model was constructed and 89.9% of HC, 75.5% of T2DM, 69.6% of early DKD and 75.7% of overt DKD subjects in the external validation cohort were correctly classified. In addition, 87.5% of grey-zone patients were successfully distinguished from T2DM patients. Conclusion: This multi-omics platform displayed a satisfactory ability to explore molecular information and provided a new insight for establishing effective DKD management.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/metabolismo , Silício , Metabolômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peptídeos , Diabetes Mellitus Tipo 2/metabolismo
2.
Acta Biomater ; 131: 544-554, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265475

RESUMO

Diabetic wound healing is highly desirable but remains a great challenge owing to the continuous damage of excess reactive oxygen species (ROS) and degradation of therapeutic peptide drugs by over-expressed matrix metalloproteinase (MMP). Herein, we developed a stimuli-responsive smart dressing for theranostics of diabetic wounds using graphene quantum dots-decorated luminescent porous silicon (GQDs@PSi), which was further loaded with peptide and embedded in chitosan (CS) film. The confinement of GQDs in nanochannels of PSi endowed GQDs@PSi with efficient fluorescence resonance energy transfer (FRET) effect, leading to initial red fluorescence of PSi with complete quench of GQD's blue fluorescence. Furthermore, the decoration of GQDs on PSi surface significantly enhanced the loading capacity for peptide drugs including epidermal growth factor (EGF) and insulin (Ins) which can promote diabetic wounds healing. The peptides coloaded in GQDs@PSi exhibited sustained release behavior and could be protected in presence of MMP owing to size exclusion of PSi's nanochannels. As H2O2-triggered oxidation of PSi lead to weakened FRET effect and degradation of PSi, GQDs@PSi demonstrated H2O2-responsive ratiometric fluorescence change (from red PSi to blue GQDs) and drug release behavior. In combination with CS's degradation in the acidic and oxidation microenvironment, the smart dressing also showed stimuli-responsive drug release toward slightly acid and highly oxidative conditions in diabetic wounds. In vitro and in vivo results demonstrated the smart dressing enhanced the proliferation and migration of cells as well as significantly healed diabetic wounds. Real-time indicating of the exacerbation or healing of diabetic wounds was also realized using the rate of fluorescent discoloration of the dressing. STATEMENT OF SIGNIFICANCE: In this work, a dual luminescent nanomaterial was created by hosting graphene quantum dots (GQDs) in the nanochannel of porous silicon (PSi), which was further applied for theranostics of diabetic wound. The synergistic effect of the host-guest nanohybrid is significant. The GQDs can significantly improve the capacity for peptide drug loading and form a stimuli-response visual ratiometric sensor with luminescent PSi, which can also protect and sustain release of peptide drugs for effective diabetic wounds treatment. After embedded in a chitosan film, the smart dressing displayed H2O2-responsive visual ratiometric fluorescence change and drug release behavior. In vitro and in vivo results demonstrated the smart dressing enhanced the proliferation and migration of cells as well as significantly healed diabetic wounds.


Assuntos
Diabetes Mellitus , Grafite , Pontos Quânticos , Bandagens , Humanos , Peróxido de Hidrogênio , Porosidade , Medicina de Precisão , Silício
3.
Biomaterials ; 272: 120772, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33838529

RESUMO

Insufficient angiogenesis happened in body defects such as ulceration, coronary heart disease, and chronic wounds constitutes a major challenge in tissue regeneration engineering. Owing to the poor bioactivity and maintenance of pro-angiogenic cells and factors during transplantation, new bioactive materials to tackle the barrier are highly desirable. Herein, we demonstrate a co-delivery platform for synergistic promotion of angiogenesis based on biodegradable, therapeutic, and self-reporting luminescent porous silicon (PSi) microparticles. The biodegradable and biocompatible PSi microparticles could quickly release therapeutic Si ions, which is bioactive to promote cell migration, tube formation, and angiogenic gene expression in vitro. To construct a highly efficient angiogenesis treatment platform, vascular endothelial growth factor (VEGF) was electrostatically adsorbed by PSi microparticles for effective drug loading and delivery. The dual therapeutic components (Si ions and VEGF) could release with the dissolution of Si skeleton, accompanying by the decay of photoluminescence (PL) intensity and blue shift of the maximum PL wavelength. Therefore, real-time drug release could be self-reported and assessed with the two-dimensional PL signal. The co-delivery of Si ions and VEGF displayed synergistic effect and highly efficient angiogenesis, which was evidenced by the enhancement of endothelial cell migration and tube formation in vitro with approximately 1.5-5 times higher than control. The blood vessel formation in vivo was also significantly improved as shown by the chick chorioallantoic membrane (CAM) model, in which the total length, size and junctions exhibited 2.1 ± 0.4, 4 ± 0.4, and 3.9 ± 0.3 times in comparison to control, respectively. The PSi and VEGF co-delivery system display great potential in tissue engineering as a biodegradable and self-reporting theranostic platform to promote angiogenesis.


Assuntos
Neovascularização Fisiológica , Silício , Animais , Materiais Biocompatíveis , Neovascularização Patológica , Porosidade , Fator A de Crescimento do Endotélio Vascular
4.
ACS Sens ; 5(7): 2096-2105, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32450686

RESUMO

Noninvasive and visual monitoring of glucose is highly desirable for diabetes diagnostics and long-term home-based health management. Owing to the correlation of the glucose level between blood and sweat, on-body sweat glucose detection provides potential for noninvasive healthcare but is highly challenging. Herein, we for the first time demonstrate a wearable skin pad based on the ratiometric fluorescent nanohybrid, which can realize noninvasive and visual monitoring of sweat glucose. Luminescent porous silicon (PSi) particles, which have a porous structure and oxidation-responsive photoluminescence decay, are chosen to load (adsorb or entrap) carbon quantum dots (CQDs) for the construction of the dual fluorescence nanohybrid. Bimetallic (Au and Ag) nanoparticles (BiM) are also co-decorated on the PSi particle to improve detection sensitivity by enhancing PSi's initial fluorescence and oxidation kinetics. Owing to the efficient fluorescence resonance energy transfer effect, BiM-CQDs@PSi initially exhibits PSi's red fluorescence with complete quenching of CQDs's blue fluorescence. The oxidation of PSi triggered by hydrogen peroxide (H2O2) weakens the FRET effect and decays PSi's fluorescence, causing ratiometric fluorescence to change from red (PSi) to blue (CQDs). A wearable skin pad is easily fabricated by co-immobilization of BiM-CQDs@PSi and glucose oxidase (GOX) in a transparent and biocompatible chitosan film supported by an adhesive polyurethane membrane. When the skin pad is attached on the body, the same ratiometric fluorescence transition (red → blue) is observed upon the stimulation of H2O2 generated in GOX-catalyzed oxidation of sweat glucose. Based on the strong correlation between the ratio of the fluorescence change and sweat glucose level, clinical tests toward diabetics and healthy volunteers can clearly indicate hyperglycemia.


Assuntos
Glucose , Pontos Quânticos , Humanos , Peróxido de Hidrogênio , Limite de Detecção , Suor
5.
ACS Appl Mater Interfaces ; 10(17): 14389-14398, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29648434

RESUMO

Nanostructured semiconductors are one of the most potent candidates for matrix-free laser desorption/ionization mass spectrometric (LDI-MS) analysis of low-molecular-weight molecules. Herein, the enhanced photoinduced electron transfer and LDI on the tip of a vertical silicon nanowire (SiNW) array were investigated. Theoretical simulation and LDI detection of indigo and isatin molecules in negative ion mode revealed that the electric field can be enhanced on the tip end of SiNWs, thereby promoting the energy and electron transfer to the analytes adsorbed on the tip of SiNWs. On the basis of this finding, a tip-contact sampling method coupled with LDI-MS detection was established. In this strategy, the tip of SiNWs can be regarded as microextraction heads for the sampling of molecules when they come in contact with analytes. Impression of skin, tissue, and pericarp on the vertical SiNW array can effectively transfer endogenous metabolites or exogenous substances onto the tip. Upon laser irradiation, the adsorbed molecules on the SiNW tip can be efficiently ionized and detected in negative ion mode because of the tip-enhanced electron transfer and LDI effect. We believe this work may significantly expand the application of LDI-MS in various fields.

6.
Sci Rep ; 7(1): 17432, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234137

RESUMO

This study proposed an easy-to-use method for cell identification and quantitation by ratiometric matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Two pairs of MS peaks in the molecular fingerprint of cells were selected as intracellular dual-biomarkers due to the stability and specificity of their ratio values in different types of hepatocellular cancer (HCC) cell lines. Five types of HCC cells can be thereafter differentiated based on these two pairs of intracellular peptides/proteins. Two types of HCC cells, Huh7 and LM3 were co-cultured as a model to test whether the method is feasible for cell quantitation. The results indicated that the ratiometric peak intensity of the two pair biomarkers exhibits linear relationship with the proportion of Huh7 cells. Furthermore, tumor heterogeneity was simulated by subcutaneously injecting the co-cultured cells into nude mice. The cell type and proportion in the section of grown tumor tissue can be discriminated using the ratiometric MALDI imaging approach. LC-MS/MS detection revealed that one of the biomarker pairs belongs to thymosin family, ß4 and ß10. The ratiometric MS spectral approach using intracellular dual-biomarkers might become a pervasive strategy for high-throughput cell identification and quantitation, which is vital in tumor heterogeneity study, clinical diagnosis and drug screening.


Assuntos
Biomarcadores Tumorais/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Técnicas de Cocultura , Citometria de Fluxo , Humanos , Camundongos Nus , Transplante de Neoplasias , Análise de Componente Principal
7.
Small ; 13(39)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28834345

RESUMO

Magnetic-luminescent nanocomposites have multiple uses including multimodal imaging, magnetic targeted drug delivery, and cancer imaging-guided therapies. In this work, dumbbell-like MnFe2 O4 -NaYF4 Janus nanoparticles are synthesized via a two-step thermolysis approach. These synthesized nanoparticles exhibit stability in aqueous solutions and very low cytotoxicity after poly(acryl amide) modification. High cellular uptake efficiency is observed for the folic acid-conjugated MnFe2 O4 -NaYF4 in human esophagus carcinoma cells (Eca-109) due to the upconversion luminescence properties as well as the folate targeting potential. The MnFe2 O4 -NaYF4 also strongly absorbs light in the near-infrared range and rapidly converts to heat energy. It is demonstrated that Eca-109 cells incubated with MnFe2 O4 -NaYF4 are killed with high efficiency after 808 nm laser irradiation. Furthermore, the growth of tumors in mice (grown from Eca-109 cells) is highly inhibited by the photothermal effects of MnFe2 O4 -NaYF4 efficiently. Histological analysis reveals no pathological change and inflammatory response in heart, liver, spleen, lung, or kidney. The low toxicity, excellent luminescence, and highly efficient photothermal therapy properties of MnFe2 O4 -NaYF4 Janus nanoparticles illustrated in this work support their vast potential for nanomedicine and cancer therapy.


Assuntos
Hipertermia Induzida , Luminescência , Magnetismo , Nanopartículas/química , Fototerapia , Coloração e Rotulagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos Férricos/química , Fluorescência , Fluoretos/química , Ácido Fólico/química , Humanos , Manganês/química , Camundongos Nus , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Especificidade de Órgãos , Temperatura , Ítrio/química
8.
ACS Nano ; 11(8): 7938-7949, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28700206

RESUMO

Wound monitoring and curing is of great importance in biomedical research. This work created a smart bandage that can simultaneously monitor and inhibit wound infection. The main components of the smart bandage are luminescent porous silicon (LuPSi) particles loaded with ciprofloxacin (CIP). This dual luminescent system can undergo accelerated fluorescent color change from red to blue upon the stimulation of reactive oxygen species (ROS) and elevated pH, which are main biomarkers in the infected wound. The mechanism behind the chemical-triggered fluorescent color change was studied in detail. In vitro experiment showed that the ratiometric fluorescent intensity (IRed/IBlue) of CIP-LuPSi particles decreased from 10 to 0.03 at pH 7.5 after 24 h, while the value deceased from 10 to 2.15 at pH 7.0. Strong correlation can be also found between the IRed/IBlue value and ROS concentration ranging from 0.1 to 10 mM. In addition, the oxidation of LuPSi also simultaneously triggered the release of CIP molecules, which exhibited bacterial inhibition activity. Therefore, the ratiometric fluorescent intensity change at red and blue channels can indicate not only the wound infection status but also the release of antibiotics. In vivo test proved that the smart bandage could distinguish infected wounds from acute wounds, just relying on the naked eyes or a cell phone camera. On the basis of the Si nanotechnology established in this work, theranostic wound care will be realized in future.


Assuntos
Nanotecnologia/métodos , Silício/química , Infecção dos Ferimentos/metabolismo , Biofilmes , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana , Porosidade , Pseudomonas aeruginosa/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos
9.
Biomaterials ; 91: 182-199, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27031812

RESUMO

The use of non-toxic or low toxicity materials exhibiting dual functionality for use in sentinel lymph node (SLN) mapping and cancer therapy has attracted considerable attention during the past two decades. Herein, we report that the natural black sesame melanin (BSM) extracted from black sesame seeds (Sesamum indicum L.) shows exciting potential for SLN mapping and cancer photothermal therapy. Aqueous solutions of BSM under neutral and alkaline conditions can assemble into sheet-like nanoparticles ranging from 20 to 200 nm in size. The BSM nanoparticles were encapsulated by liposomes to improve their water solubility and the encapsulated and bare BSM nanoparticles were both non-toxic to cells. Furthermore, the liposome-encapsulated BSM nanoparticles (liposome-BSM) did not exhibit any long-term toxicity in mice. The liposome-BSM nanoparticles were subsequently used to passively target healthy and tumor-bearing mice SLNs, which were identified by the black color of the nanoparticles. BSM also strongly absorbed light in the near-infrared (NIR) range, which was rapidly converted to heat energy. Human esophagus carcinoma cells (Eca-109) were killed efficiently by liposome-BSM nanocomposites upon NIR laser irradiation. Furthermore, mouse tumor tissues grown from Eca-109 cells were seriously damaged by the photothermal effects of the liposome-BSM nanocomposites, with significant tumor growth suppression compared with controls. Given that BSM is a safe and nutritious biomaterial that can be easily obtained from black sesame seed, the results presented herein represent an important development in the use of natural biomaterials for clinical SLN mapping and cancer therapy.


Assuntos
Neoplasias Esofágicas/terapia , Esôfago/patologia , Melaninas/análise , Melaninas/uso terapêutico , Nanopartículas/análise , Nanopartículas/uso terapêutico , Linfonodo Sentinela/patologia , Animais , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Humanos , Hipertermia Induzida/métodos , Lipossomos , Metástase Linfática/diagnóstico , Metástase Linfática/patologia , Melaninas/administração & dosagem , Camundongos , Nanopartículas/administração & dosagem , Fototerapia/métodos , Sementes/química , Sesamum/química
10.
Theranostics ; 6(4): 485-500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941842

RESUMO

In this study, a multimodal therapeutic system was shown to be much more lethal in cancer cell killing compared to a single means of nano therapy, be it photothermal or photodynamic. Hollow magnetic nanospheres (HMNSs) were designed and synthesized for the synergistic effects of both magneto-mechanical and photothermal cancer therapy. By these combined stimuli, the cancer cells were structurally and physically destroyed with the morphological characteristics distinctively different from those by other therapeutics. HMNSs were also coated with the silica shells and conjugated with carboxylated graphene quantum dots (GQDs) as a core-shell composite: HMNS/SiO2/GQDs. The composite was further loaded with an anticancer drug doxorubicin (DOX) and stabilized with liposomes. The multimodal system was able to kill cancer cells with four different therapeutic mechanisms in a synergetic and multilateral fashion, namely, the magnetic field-mediated mechanical stimulation, photothermal damage, photodynamic toxicity, and chemotherapy. The unique nanocomposites with combined mechanical, chemo, and physical effects will provide an alternative strategy for highly improved cancer therapy efficiency.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Tratamento Farmacológico/métodos , Hipertermia Induzida/métodos , Magnetismo , Nanosferas/administração & dosagem , Fotoquimioterapia/métodos , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Portadores de Fármacos/química , Grafite/administração & dosagem , Humanos , Nanosferas/química , Pontos Quânticos/administração & dosagem
11.
Biomaterials ; 35(29): 8357-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002262

RESUMO

A great challenge in developing nanotechnologies for cancer diagnosis and therapy has been the combined functionalities required for complicated clinical procedures. Among all requirements, toxicity has been the major hurdle that has prevented most of the nano-carriers from clinical use. Here, we extracted chlorophyll (Chl) from vegetable and encapsulated it into polymer (pluronic F68, Plu) micelles for cancer imaging and therapy. The results showed that the Chl-containing nanocomposites were capable of mouse tumor targeting, and the nanocomposite fluorescence within the tumor sites remained at high intensity more than two days after tail-vein injection. It is interesting that oral administration with the nanocomposites was also successful for tumor target imaging. Furthermore, the dietary Chl was found to be able to efficiently convert near-infrared laser irradiation to heat. The growths of melanoma cells and mouse tumors were effectively inhibited after being treated with the nanocomposites and irradiation. The suppression of the tumors was achieved by laser-triggered photothermal and photodynamic synergistic effects of Chl. As a natural substance from vegetable, Chl is non-toxic, making it an ideal nano-carrier for cancer diagnosis and treatment. Based on the results of this research, the Plu-Chl nanocomposites have shown promise for future clinical applications.


Assuntos
Clorofila/uso terapêutico , Melanoma/diagnóstico , Melanoma/terapia , Nanocompostos/química , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Linhagem Celular , Clorofila/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Hipertermia Induzida , Lasers , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Poloxâmero/química
12.
Appl Biochem Biotechnol ; 169(5): 1566-78, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23322252

RESUMO

Gold nanostructures have generated significant attention in biomedical areas because of their major role in cancer photothermal therapeutics. In order to conveniently combine gold nanostructures and drugs into one nanocomposite, Au2Se/Au core-shell nanostructures with strong near-infrared-absorbing properties were synthesized using a simple method and embedded inside bovine serum albumin (BSA) nanospheres by using a spray dryer equipped with an ultrasonic atomizer followed by thermal denaturation. The nanospheres with narrow size distribution mainly ranging from 450 to 600 nm were obtained. The Au2Se/Au-loaded BSA nanospheres (1 mg) adsorbed at least 0.01 mg of water-insoluble zinc phthalocyanine (ZnPc) photosensitizer. After irradiation with a 655-nm laser (20 min), the temperature of the Au2Se/Au-loaded BSA nanospheres [200 µL, 2 mg/mL, BSA/Au2Se/Au 10:1 (w/w)] increased by over 20 °C from the initial temperature of 24.82 ± 0.15 °C, and the release of ZnPc was improved compared with a corresponding sample without irradiation. After being incubated with cancer cells (human esophageal carcinoma Eca-109), the nanospheres exhibited photothermal and photodynamic therapy with a synergistic effect upon laser irradiation. This work provides novel Au2Se/Au-loaded polymer nanospheres prepared by a high-efficiency strategy for incorporating drugs for improving the efficiency in killing cancer cells.


Assuntos
Portadores de Fármacos/síntese química , Ouro/química , Indóis/farmacologia , Nanosferas/química , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Selênio/química , Soroalbumina Bovina/química , Animais , Bovinos , Portadores de Fármacos/efeitos da radiação , Humanos , Indóis/química , Isoindóis , Lasers , Microscopia Eletrônica , Nanosferas/efeitos da radiação , Nanosferas/ultraestrutura , Compostos Organometálicos/química , Tamanho da Partícula , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Células Tumorais Cultivadas , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...